
BoR: Toward High-Performance Permissioned
Blockchain in RDMA-Enabled Network

Bobo Huang , Student Member, IEEE, Li Jin, ZhiHui Lu ,Member, IEEE, Xin Zhou ,

Jie Wu,Member, IEEE, Qifeng Tang, and Patrick C. K. Hung ,Member, IEEE

Abstract—Known as a distributed ledger, blockchain is becoming prevalent due to its decentralization, traceability and tamper

resistance. Particularly, permissioned blockchain such as Hyperledger Fabric shows great application prospects as the infrastructure of

IoT security, credit management, etc. Many cloud platforms like AWS, Azure, Oracle and IBM cloud currently provide blockchain as a

service, in which tenants can quickly build permissioned blockchain and run smart contract based applications. However, the

transactions throughput and scalability in the permissioned blockchain are not ideal, despite many optimization efforts in consensus

protocol and parallel chain. Existing solutions still reveals some limitations like excessive CPU scheduling, inefficient block broadcast

and high latency of initial blocks synchronization when new nodes join blockchain network. Inspired by the emerging RDMA (Remote

Direct Memory Access) network, we propose BoR, an RDMA-based permissioned blockchain framework. By offloading the block

transfer transaction into RDMA NICs, it can increase block broadcast speed and reduce block sync delay. We exploit the RDMA

primitives to redesign the block synchronization protocol and accelerate DPoS (Delegated Proof of Stake) consensus process for

higher throughput and lower latency in kernel-bypass manner. As demonstrated in our evaluation with different workloads, BoR with

lower CPU utilization significantly outperforms the state-of-the-art EoS blockchain.

Index Terms—Blockchain-as-a-service, RDMA, permissioned blockchain, one-sided communication, RoCE, kernel-bypass network

Ç

1 INTRODUCTION

BLOCKCHAIN as a Service (BaaS) is an emerging powerful
model that simplifies the deployment of distributed

blockchain systems and provides an efficient tradeoff
among transparency, efficiency and cost. On one hand,
BaaS cloud providers concentrate on maintaining the
important blockchain-related artifacts and infrastructures
for their tenants. The complex back-end activities supported
by BaaS include blockchain deployment, suitable resources
allocation, security feature, and hosting requirements for
their tenants. On the other hand, the tenants can focus on
various blockchain-based applications by using BaaS cloud
services without worrying about performance related
issues. BaaS bridges the huge gap between flexibility and
complexity. Many cloud providers including AWS Cloud
[1], Microsoft Azure [2], Oracle and IBM cloud [3] have
deployed cloud-based BaaS into their data centers.

With the increase of blockchain data volume and service
request rate, BaaS needs the support of high-throughput

and low-latency blockchain systems. In response, many
research works have been devoted to blockchain perfor-
mance analysis [8], [9], [10], [11] and consensus protocol [6],
[7], [12], [13], [14], [15], [16]. The early PoW-driven block-
chains such as Bitcoin [17] and Ethereum [5] require a large
amount of computing power for hash calculation, which
results in very low transaction throughput, high CPU con-
sumption and large block interval. Thanks to the great
efforts on consensus algorithms [6], [7], [12], [13], [14], [15],
[16], the block internal in blockchain systems has been
reduced from minutes to seconds, even milliseconds as
shown in Table 1. PBFT [12] consensus has been adopted
for Hyperledger Fabric [6] in which the block internal is
3.6 s, while DPoS [13] has been used for EoS [7] where the
block internal is 0.5 s. Such efficient consensus protocols
remove meaningless computing power loss and lead to
higher transactions throughput. Hence, the performance
bottleneck in blockchains has shifted to communication
overhead including blocks broadcast delay and bootstrap-
ping time of new nodes.

Moreover, with a larger-scale blockchain-as-a-service
cloud, the latency blocks transmission will lead to more forks
(Fig. 1) with higher probability of being attacked. Addition-
ally, with the rapid evolvement of blockchain network (as
shown in Table 2), the latency for bootstrapping new nodes
increases linearly, which severely reduces the scalability of
blockchain systems. Despite many research efforts, the tradi-
tional TCP-based blockchain is confronted with lots of chal-
lenges in terms of transaction throughput, block broadcast
delay, CPU overhead and bootstrapping time of new nodes
[18]. Therefore, how to reducemeaninglessCPU involvement,

� B. Huang, L. Jin, Z. Lu, X. Zhou, and J. Wu are with the School of Com-
puter Science, Fudan University, Shanghai 200433, China, and also with
the Engineering Research Center of Cyber Security Auditing and Monitor-
ing, Ministry of Education, Shanghai 200433, China.
E-mail: {huangbb16, ljin18, lzh, xzhou18, jwu}@fudan.edu.cn.

� Q. Tang is with the Shanghai Data Exchange Corporation and with
National Engineering Laboratory for Big Data Distribution and Exchange
Technologies, Shanghai 200436, China. E-mail: keven@chinadep.com.

� P.C.K. Hung is with the Faculty of Business and IT, University of Ontario
Institute of Technology, Oshawa, ON L1G 0C5, Canada.
E-mail: patrick.hung@uoit.ca.

Manuscript received 31 Mar. 2019; revised 3 Sept. 2019; accepted 10 Oct.
2019. Date of publication 21 Oct. 2019; date of current version 15 Apr. 2020.
(Corresponding author: Zhihui Lu.)
Digital Object Identifier no. 10.1109/TSC.2019.2948009

IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 13, NO. 2, MARCH/APRIL 2020 301

1939-1374� 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See ht _tps://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: FUDAN UNIVERSITY. Downloaded on April 10,2020 at 01:17:04 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-9215-4298
https://orcid.org/0000-0002-9215-4298
https://orcid.org/0000-0002-9215-4298
https://orcid.org/0000-0002-9215-4298
https://orcid.org/0000-0002-9215-4298
https://orcid.org/0000-0001-5706-7503
https://orcid.org/0000-0001-5706-7503
https://orcid.org/0000-0001-5706-7503
https://orcid.org/0000-0001-5706-7503
https://orcid.org/0000-0001-5706-7503
https://orcid.org/0000-0002-2448-4201
https://orcid.org/0000-0002-2448-4201
https://orcid.org/0000-0002-2448-4201
https://orcid.org/0000-0002-2448-4201
https://orcid.org/0000-0002-2448-4201
https://orcid.org/0000-0002-9903-4862
https://orcid.org/0000-0002-9903-4862
https://orcid.org/0000-0002-9903-4862
https://orcid.org/0000-0002-9903-4862
https://orcid.org/0000-0002-9903-4862
mailto:huangbb16@fudan.edu.cn
mailto:ljin18@fudan.edu.cn
mailto:lzh@fudan.edu.cn
mailto:xzhou18@fudan.edu.cn
mailto:jwu@fudan.edu.cn
mailto:keven@chinadep.com
mailto:patrick.hung@uoit.ca

how tominimize the block broadcast delay and the bootstrap-
ping time of new nodes, are significant challenges for the per-
missioned blockchain in data center network.

Meanwhile, emerging advanced hardware features like
high-speed interconnect with RDMA [19] pose new oppor-
tunities for high-performance quality of data-intensive
applications [20], [21], [22], [23], [24], [25]: the RDMA hard-
ware support for kernel bypassing and TCP/IP stack state-
less offloads properties makes it very promising to offload
data transmissions into RDMA NIC (RNIC) Host Channel
Adapters (HCAs). Furthermore, RDMA over Converged
Ethernet (RoCE) [24] has been widely deployed in many
data centers [8], [26], [27] to accelerate big data transfers.
Many applications in data centers exploit RDMA primitives
(such as RDMA WRITE/READ/SEND) [28] to overwrite
the underlying communication mechanisms for higher
throughput, lower latency and less CPU involvement,
which is called RDMA-enhanced paradigm. For instance,
RDMA-driven graph-based RDF store system for low-
latency and highly concurrent query service over large-scale
datasets, was put forward by Wukong [20]. RDMA_Mongo
[29] employs one-sided RDMA primitives to redesign the
oplogs synchronization for faster large-scale data process-
ing in document-based NoSQLs. Octopus [30] leverages
RDMA and NVM to implement low-latency persistent
memory file system. Other RDMA-enabled systems focus
on key-value store [27], [27], [31], [32], [33], distributed file
system [22], [34] .etc. Therefore, can we implement permis-
sioned blockchain over RDMA to boost higher performance
of blockchain as a service in cloud data centers?

Inspired by RDMA-enhanced paradigm, we propose a
high-performance permissioned blockchain over RDMA
named BoR, which is based on open-source EoS framework
[7]. First, we design a RDMA context detection method when
a local node establishes connections with its peer nodes. If the
local and remote nodes are all in the interconnected RDMA
network, the RDMA QP metadata including RNIC gid index
and device port number is exchanged through TCP connec-
tions. The RDMA channels between themwill be created and
pushed into local channel list. Otherwise, the TCP socket-
based connection will be used for communication. Second,
the local node sends handshake message to all TCP connec-
tions and RDMA channels for state synchronization. Then it

receives a notice message including the state of blocks and
transactions on remote peer nodes. Based on such notice mes-
sage, the local node determineswhether blockdata synchroni-
zation action is required or not. Transmission data can be
divided into ACK, control message, transactions and blocks.
During the communication process, RDMAWRITE primitive
with immediate data is exploited to send the transmission
data. Then RDMA completion event channel is exploited to
monitor and process the incoming messages. Eventually, we
redesign the blocks/transactions synchronization protocol
with RDMAprimitives. Considering the overhead of register-
ing and deregistering RDMAMemory Region (MR), we regis-
ter sufficient MRs for each RDMA QP-based channel and
introduce memory pool to manage MR. Whenever a message
needs to be sent or received, the RDMA channel only needs to
apply for one MR fragment and the corresponding memory
addresswith the remote key.

Our primary contributions are summarized as follows:

� We conduct a detailed analysis of the network com-
munication protocol of the EoS blockchain, then
determine the design goals and challenges of BoR,
and propose the overall architecture of Blockchain
over RDMA called BoR.

� We propose an RDMA-enabled sync manager for
managing RDMA QP channel, Memory Region,
RDMA adapter and block sync state.

� We redesign a new node bootstrapping and blocks/
transactions broadcast protocol based on RDMA
primitives with immediate data. And completion
event channel is employed to guarantee low latency,
high throughput and less CPU involvement.

� We implement the BoR prototype and evaluate it
with increasing scale of block datasets. A compari-
son with the state-of-the-art EoS blockchain system
shows that BoR achieves the reduced consuming
time by up to 20.2 percent and lower CPU overhead
by 26.4~33.9 percent for the initial block synchroniza-
tion when a new node joins the blockchain network.

The remainder in this paper is organized as follows.
Section 2 introduces the key concepts about blockchains,
RDMA and RDMA-driven system, then explains the motiva-
tion. Section 3 demonstrates the overviewof BoR architecture,
then discusses BoR design goals and challenges. In Section 4,
we describe the key ideas of BoR, then RDMA-enabled initial
synchronization and block broadcast. In Section 5, we evalu-
ate the BoR system and compare it with the original EoS
blockchain. In Section 6, discussions and related works on
Blockchain and RDMA are illustrated. Section 7 presents the
conclusion and futurework.

TABLE 1
Comparison of Four Platforms of Blockchain

Platform Block Interval Consensus TPS

Bitcoin 10 minutes PoW [4] about 7
Ethereum 10 to 20 seconds PoS [5] < 100
Fabric 3 to 6 seconds PBFT [6] > 1000
EoS 0.5 seconds DPoS [7] million

Fig. 1. The fork of a blockchain.

TABLE 2
Amount of Data and Synchronization Time

Platform Total Growth rate Time

Bitcoin 170 GB 50 GB per year 2-3 days
Ethereum 430 GB 270 GB per year* > 2 days
EoS 330 GB 12 GB per month** 1-2 days

* From 2016 to 2017
**The first month of EoS

302 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 13, NO. 2, MARCH/APRIL 2020

Authorized licensed use limited to: FUDAN UNIVERSITY. Downloaded on April 10,2020 at 01:17:04 UTC from IEEE Xplore. Restrictions apply.

2 BACKGROUND AND MOTIVATION

2.1 Blockchain

In recent years, with the booming of emerging cryptocur-
rency such as Bitcoin [17] and Ethereum [5], the underlying
blockchain technology has raised universal attention in aca-
demia and industry. Blockchain is a decentralized distrib-
uted ledger or database [35] which consists of a chained
data structure based on block unit [18]. It is designed to
enable transparent multi-party transactions services with-
out third-party trust guarantee. Byzantine fault-tolerant
consensus protocols [36] (such as provable voting mecha-
nism [37]) are leveraged to ensure the consistency among
blockchain nodes, and each joined node has a complete
blocks data copy. Scalable P2P network [38] is exploited to
realize decentralization of blockchain. Digital signatures
[39] and Merkle Tree [40] are used to prevent transaction
records on the blockchain from being maliciously tampered.
Smart contracts provide the programmability of blockchain
platform and every data record maintained within block-
chain can only be accessed and traced by running smart
contracts [41].

The following three key concepts are the basis of
blockchain:

Transaction. As a carrier of assets or value, a transaction
can be broadcast to the blockchain network and collected
into blocks. Generally, previous transaction outputs are ref-
erenced as new transaction inputs by a transaction. A trans-
action can only be regarded as an irreversible one when a
sufficient number of trusted peer nodes reach a consensus
on a block being valid. All transactions which have been
aggregated into a block can be browsed as transactions are
unencrypted in blockchain.

Block. A block can be treated as a batch of transac-
tions. Every transaction is permanently recorded in
blocks files. All blocks are organized into a linear chain-
based structure over time, as shown in Fig. 2. Each block
is composed of block header and body. The block header
contains the metadata including parent hash, local hash,
timestamp and Merkel root while the block body consists
of transactions which organized into a Merkel tree. New
transactions processed by miners are aggregated into the
Merkel tree in new blocks which are appended to the
end of blockchain.

Consensus. Consensus protocols are leveraged by a block-
chain context to guarantee the integrity of the blockchain.
The critical objectives of the consensus are to prevent
unwanted forks or double spending.

Basically, blockchain can be divided into public, private or
permissioned chain. In public blockchains (such as Bitcoin

[17] and Ethereum [5]), anyone can be allowed to partici-
pate in, leave, audit, access, and write the ongoing activities.
That helps to maintain the self-governed features. Com-
pared with the public blockchain, private or permissioned
blockchain like Hyperledger Fabric [42] and EoS [7] is gene-
rally deployed in data centers and designed to build a plat-
form with high credibility where each participant is aware
of others. This paper focuses on the private/permissioned
blockchain.

However, with the increasing scale of historical block
datasets and the rapid evolution of blockchain architecture
with faster consensus, TCP-based communication layer in
blockchain cannot satisfy the requirements of low latency,
high throughput under high concurrency level. The under-
lying network stack for traditional blockchains is a potential
bottleneck, especially for the initial blocks synchronization
when a new node joins a blockchain network.

2.2 Blockchain as a Service

Blockchain as a Service (BaaS) is a cloud-based solution
which provides a distributed blockchain runtime for high
flexibility and availability demanded by tenants. The cloud
providers focus on managing the blockchain-related back-
end services, components, and resources allocation while
the tenants focus on developing functionalities, smart con-
tracts, and blockchain applications [11], [35], [39], [43], [44]
in a straightforward manner. Hence, BaaS model gained
great traction recently in academia and industry. For
instance, Blockstack [35] is a Bitcoin-based naming and
storage system in which minimal metadata is stored in Bit-
coin. The prior work [44] proposes the blockchain-based
searching scheme over encrypted data in cloud to resist
malicious attacks.

However, with the growing number of blockchain appli-
cations and the increasing scale of users of blockchain appli-
cations, the high request rate of BaaS in cloud data centers
generates a strong demand for high-performance distrib-
uted blockchain systems. While prior systems [11], [14], [15]
have proposed some efficient optimization strategies and
algorithms to deal with the performance gap, they fall short
in leveraging the rich modern hardware like RDMA devices
in data centers to achieve higher quality of BaaS.

2.3 EoS and Graphene Technology

This section describes EoS and its underlying technology.
The prototype implementation of the RDMA-driven per-
missioned Blockchain in this paper is based on the EoS
system.

EoS. EoS is an emerging blockchain platform developed by
Blockone. The objective of EoS is to implement a blockchain
architecture that supports the functionalities and applications
like an operating system [7]. Due to the limitations of high
latency and low throughput in common blockchain applica-
tions, EoS employs an efficient parallel chain and DPoS con-
sensus to boost a faster blockchain. Unlike the PoW and PoS
consensusmechanisms, the DPoS nodes need to participate in
the witness election. Only the nodes (at least 21 nodes) who
win the election can be entitled to the generation of blocks. In
addition, another 100 candidate nodes are regarded aswitness
candidates. They are reckoned as substitutes once the 21

Fig. 2. Blockchain data structure.

HUANG ET AL.: BOR: TOWARD HIGH-PERFORMANCE PERMISSIONED BLOCKCHAIN IN RDMA-ENABLED NETWORK 303

Authorized licensed use limited to: FUDAN UNIVERSITY. Downloaded on April 10,2020 at 01:17:04 UTC from IEEE Xplore. Restrictions apply.

witness nodes have problems. The current block interval of
EoS is about 0.5 seconds [7].

There are three main components in EoS: nodeos, cleos
and keosd. Nodeos acts as a server node component. Cleos
is a command line interface that is responsible for interact-
ing with blockchains, managing wallets and accounts, and
calling smart contracts on blockchains. Keosd is exploited to
manage the wallets in EOSIO.

Graphene Technology. Graphene is a blockchain toolkit
developed by the BitShares team which can enable higher
concurrency level. It is an open-source blockchain underly-
ing library which is based on DPoS consensus and has been
leveraged in EoS. With Graphene technology, EoS can reach
millions of Transactions Per Second (TPS) through the par-
allel chain. The local parallel chain in EoS can even reach
the millisecond-level confirmation speed. Due to its high
performance in consensus and TPS, EoS is employed by this
paper as the basis of our BoR prototype.

2.4 RDMA and Its Characteristics

Remote Direct Memory Access (RDMA) is a completely
kernel-bypassing and high-speed interconnect technique
with memory semantics by offload the entire TCP/IP proto-
col stack into dedicated RDMA NICs (RNICs). As shown in
Fig. 3, lossless network is leveraged by RDMA to achieve
high bandwidth while zero copy technology is employed
to reduce the number of system interrupts and memory
copies for ultra-low latency. Two kinds of message-oriented
primitives are provided by RDMA: two-sided message
passing interfaces such as SEND/RECV Verbs and one-
sided primitives such as WRITE, READ and atomic opera-
tions (Compare-and-Swap and Fetch-and-Add). Compared
to one-sided RDMA verbs, two-sided operations still have
CPU involvement to remote host and user-space memory
copies, which introduces an unavoidable overhead [45],
[46]. To minimize the unnecessary overhead during the ini-
tial block synchronization, we leverage one-sided RDMA
WRITE with immediate for bandwidth-sensitive data mes-
sages (such as blocks and transactions).

Current RDMA provides three transport modes which
contains Reliable Connection (RC), Unreliable Connection
(UC) and Unreliable Datagram (UD). The available opera-
tions in each RDMA mode are different. For instance, the
connection-oriented RC mode supports all RDMA verbs

while the stateless UD mode only supports RDMA SEND/
RECV verbs. Moreover, only RC mode can guarantee the
sequential delivery of packets. To guarantee the high reli-
ability of the blocks/transactions transfer in BoR, we focus
on the connection-oriented RC transport in this paper.

As demonstrated in prior works [47], proper combina-
tion of different RDMA primitives (two-sided or one-sided)
can promote higher performance for RDMA enhanced sys-
tem. Therefore, two-sided RDMA SEND/RECV verbs are
exploited for exchanging registered message buffers among
BoR nodes, while one-sided RDMA WRITE with immediate
is leveraged for control and data messages during block
broadcast and synchronization in BoR.

2.5 Motivation

Blockchain as a Service (BaaS) has been widely deployed
into many cloud data centers [1], [2], [3] and exposes the
blockchain-related programming interfaces to tenants and
developers. A large amount of smart contract-based appli-
cations employ cloud-based BaaS as their underlying block-
chain runtimes. With the great popularity of BaaS and
the increasing number of smart contracts over BaaS, the
growing request rate of BaaS requires a faster and higher
concurrent permissioned blockchain. However, due to the
unavoidable overhead introduced by redundant memory
copies, frequent CPU context switching and interruptions
in the transport layer of traditional TCP-based blockchains,
existing solutions [7], [11], [14], [42] cannot achieve the
desired quality of BaaS like high throughput and low
latency. On the other hand, more faster and efficient consen-
sus algorithms make blocks synchronization and broadcast
potential bottlenecks. Meanwhile, modern RDMA hardware
in data centers has been widely leveraged to enhance data-
intensive applications such as NoSQL systems [20], [27],
[27], [29], [31], [32], [33] and distributed file systems [22],
[34] due to its ultra-low latency and high throughput with
remote CPU/OS bypassing. The kernel bypassing feature
supported by RDMA reduces the number of CPU context
switching and system interruptions while the TCP/IP stack
offload and zero copy technique drastically reduce the num-
ber of payload copies to achieve low latency, high message
rate and low memory bus contention. Inspired by this, we
attempt to exploit hybrid RDMA primitives (RDMA WRITE
and SEND/RECV) to accelerate the initial block synchroni-
zation and blocks/transactions propagation in BaaS. To the
best of our knowledge, BoR is the first attempt to apply
RDMA to boost high-performance permissioned blockchain
for cloud-based BaaS.

3 OVERVIEW

3.1 Design Goals

More Efficient Synchronization. When a new node joins a
blockchain network, it will first synchronize all historical
blocks in this blockchain. It takes 1 to 3 days to finish this
operation (as shown in Table 2), which is significantly ineffi-
cient. To be worse, during the initial block synchronization
of the new nodes, the producers in this blockchain continue
to generate new blocks. Thus, the new nodes have to take a
longer time to synchronize the new generated blocks. In
recent years, the block interval has reduced obviously. As

Fig. 3. The overview of RDMA enabled communication.

304 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 13, NO. 2, MARCH/APRIL 2020

Authorized licensed use limited to: FUDAN UNIVERSITY. Downloaded on April 10,2020 at 01:17:04 UTC from IEEE Xplore. Restrictions apply.

shown in Table 1, the shortest block interval is 0.5 second in
EoS. Therefore, if the synchronization speed is lower than
the generation speed, for instance, 1 second per block for
synchronization while 0.5 seconds per block for generation,
the new nodes will always catch up with the latest block
and never finish synchronization. Since the network trans-
mission will greatly affect the synchronization speed, our
first design goal is to propose an efficient approach to syn-
chronize the blocks with kernel-bypass RDMA technology.

Lower Broadcast Latency. When a producer generates a
new block, it will broadcast it to all the other peers immedi-
ately for consensus-based confirmation. Other peers who
received the block will verify it through the consensus pro-
tocol (such as PoW or DPoS) and then broadcast the valida-
tion result (valid or invalid block) to the whole blockchain
network. Due to the shorter block internal (0.5 s), current
EoS system requires more faster and efficient confirmation.
That means, if a new block does not be verified by other
peers for a long time due to network latency or other issues,
the next block may be generated before the previous one
being confirmed. The accumulated unconfirmed blocks
may significantly affect the overall performance of block-
chain system in BaaS cloud. Hence, reducing the broadcast
latency is imperative and can obviously boost a high-
performance blockchain. Therefore, the second design goal
for BoR is to introduce an RDMA-based broadcast method
in RoCE to accelerate the blocks broadcast. Further, we pro-
vide a lightweight RDMA-enhanced consensus mechanism
with lower broadcast latency.

Higher Throughput and Lower CPU Consumption. Besides
the optimization on business level of a blockchain, it is
also critical to optimize the blockchain from system per-
spective. Owing to the demand for computing power in
consensus-based hash calculations and high CPU utiliza-
tion introduced by initial block synchronization, existing
resource allocation for blockchain system is insufficient
and inefficient. The transport layer under traditional TCP-
based blockchain systems occupies the CPU resources due
to unavoidable payload copies, frequent CPU context
switching, and other OS-involved operations. To minimize
the above overhead and decrease the CPU utilization, BoR
leverages zero-copy feature and hybrid RDMA primitives
(SEND/RECV and RDMA WRITE with immediate) to
reduce the consumption of the system resource. (i.e., lower
CPU overhead), and thus to improve the throughput of
the blockchain network. Further, the resources saved in
blocks/transactions transfer can be exploited by other
blockchain operation like consensus. Therefore, we rede-
sign a more efficient blocks synchronization over RDMA-
capable network.

3.2 BoR Architecture: Blockchain over RDMA

BoR is a RDMA-enhanced distributed ledger with a dis-
tributed database structure. It consists of three primary
components: nodeos, keosd and cleos. Nodeos is a core
process running on the BoR server which is composed of
chain manager layer, blocks store and transport layer. It
carries the basic functions of interacting with the block-
chain network like configuring system parameters, man-
aging blockchain state, processing transaction/block
requests, managing local block records, etc. Keosd is a

wallet management client which is primarily used to
manage public/private key and wallet information. Cleos
is an interactive command line tool which bridges users
and keosd/nodeos. This paper focuses on the nodeos
component. We implement a RDMA-enabled transport
layer for nodeos which can cooperate with chain manager
layer and blocks store in a RDMA-friendly manner, as
shown in Fig. 4.

Blocks store is a storage layer which is leveraged to store
blocks/transactions in the local machine. It can provide the
query/update/delete operations over blocks/transactions
to the block manager of chain manager layer.

Chain manager layer called Chain Mgr Layer is composed
of configuration manager (Configuration Mgr), state manager
(State Mgr), blocks manager (Block Mgr) and producer man-
ager (Producer Mgr). Configuration manager is mainly
responsible for reading the BoR configuration file (like con-
fig.ini and genesis.json) and providing corresponding configu-
ration parameters to the state manager, blocks manager and
producer manager. State manager is employed to manage
the state of local blocks/transactions. For example, blocks/
transactions which are confirmed by the consensus protocol
are regarded as irreversible blocks/transactions, while the
blocks/transactions which are not confirmed are regarded as
reversible blocks or transactions. Producer manager is lever-
aged to produce/sign new blocks and verify the legitimacy
of blocks, signatures or transactions.

The block manager can receive or send control/data
messages from/to the transport layer. To be specific,
when the block manager receives a request from cleos, it
generates a corresponding control message and pushes it
to the send queue of the corresponding RDMA channel
which is maintained by the sync manager in transport
layer, as shown in Fig. 4. When receiving the control
message from the transport layer, the block manager will
take the actions corresponding to different message types
(like handshake and request messages). The actions
include requesting the blockchain status from the state
manager or requesting signatures from the producer
manager. For instance, when receiving a sync request mes-
sage, block manager resolves the block head num or
transaction id in the payload and query related blocks/
transactions in blocks store. Then the result is packaged
into data messages and sent back to the target node
through one-sided RDMA primitives.

Fig. 4. The architecture overview of BoR.

HUANG ET AL.: BOR: TOWARD HIGH-PERFORMANCE PERMISSIONED BLOCKCHAIN IN RDMA-ENABLED NETWORK 305

Authorized licensed use limited to: FUDAN UNIVERSITY. Downloaded on April 10,2020 at 01:17:04 UTC from IEEE Xplore. Restrictions apply.

Transport layer consists of three primary components:
Memory Region (MR) pool, RDMA and sync manager. The
pre-allocated MR pool is exploited to mitigate the overhead
from MR (de-/)registration at runtime. RDMA component
with one-sided verbs provides efficient transmission for
bandwidth-sensitive data messages like blocks/transac-
tions. Sync manager manages a set of RDMA channels and
every RDMA channel represents a session or connection
between local and peer nodes. The RDMA channel employs
an event channel-based worker thread to asynchronously
receive control/data messages and callback the correspond-
ing handlers. Additionally, sync manager can also receive
messages from the block manager in chain manager layer
and send them to the blockchain network.

3.3 Challenges

Multiple Message Type versus Unified Message Type in Permis-
sioned Blockchain. In EoS, there are totally 9message types. Com-
monly used messages are handshake_message, notice_message,
request_message and sync_request_message. These four types of
messages act as the control message between different peer
nodes, which involve different fields to implement different
features. There are two other types of messages, signed_block
and pack_transaction, which transfer the blocks or transactions
generated by producing nodes. The receiver handles the mes-
sages via an overloaded function handle_message(). The chal-
lenge is how to manage such different message types
efficiently. BoR exploits one-sided RDMA WRITE with imme-
diate to boost latency-sensitive control messages transfer as
well as bandwidth-sensitive data messages transfer. However,
the transport with one-sided primitives requires pre-registered
memory regions (MRs) for sending and receiving message.
This results in great difficulties to allocate a properly sizedmes-
sage buffer for RDMA memory semantics transfer with an
unknown upcomingmessage type. The receiver cannot predict
which type of message is upcoming while different message
type has different message size. Although the message type is
defined inmessage structure by the sender and then notified to
the receiver, the introduced overhead will reduce overall per-
formance. Therefore, we use a unified message definition
which includes all types of message in BoR to simplify the allo-
cation of memory buffers, the management of memory pool as
well as the serialization and deserialization of messages. That
means only onemessage abstraction is needed to represent dif-
ferentmessage types.

RDMA Channel Management in BoR. Another challenge is
how to manage the RDMA channels efficiently. As men-
tioned in Section 2, the RDMA-driven paradigm requires
dedicated RDMA-capable NICs and only machines with
interconnected RNICs can enjoy the benefits of communica-
tion over powerful RDMA primitives. However, we cannot
guarantee that every node in a blockchain network supports
RDMA.Without the deployment of RNICs, machines cannot
use RDMA channel to communicate with other nodes.
Therefore, these nodes without RNICs will be isolated. To
resolve this issue, we propose a hybrid solution: reserving
both TCP channel and RDMA channel. A novel RDMA NIC
detection algorithm is employed to determine whether the
communication over RDMA between different machines is
available or not. If available, the two peer nodeswill leverage

RDMA-enabled transport for blocks/transactions synchro-
nization. Otherwise, the TCP-based transport layer is
adopted for BoR. The RDMA context detection is executed
on TCP connections during the startup of BoR.

Asynchronously Request Handling over RDMA-Driven
Blockchain. The arrival of requests from BoR clients usually
requires corresponding responses message produced by
BoR server. In the case of high concurrency, client request
messages should be handled asynchronously to reduce the
blocking time. During the execution of BoR, the asynchro-
nous handling can release resources like occupied threads
to avoid blocking, wait until the response messages are gen-
erated, and then re-acquire one available thread for request
processing. The challenge is how to use RDMA for asyn-
chronous processing. RDMA has not provided already
wrapped asynchronous handlers yet. Therefore, we create a
listening thread which leverages RDMA completion event
channel to receive the messages asynchronously which
cached in RDMA Completion Queue (CQ). Then the mes-
sages attached to Completion Queue Element (CQE) are
parsed and distributed into the corresponding message
handlers while the event channel in the listening thread is
continuously listening. Within message handler, the opcode
field in CQE is used to identify IBV_WC_RECV_RDMA_WI-
TH_IMM type from different primitive operations while
the immediate data in CQE is used to identify different
request types including RDMA_IMM_DATA_ACK and
RDMA_IMM_DATA_MESSAGE type. After generating the
response message, the message handler will leverage one-
sided primitives (i.e., RDMAWRITE verbs) to send it.

4 BOR DESIGN

In this section, we introduce the detailed implementation of
RDMA-enabled sync manager, new node bootstrapping
protocol and block broadcast mechanism.

4.1 The Definition of Blockchain Message
over RDMA

The transmission data on BoR can be grouped into four
types: ACK, Control Message, block and transaction. The con-
trol message consists of handshake message, go away mes-
sage, time message, noticemessage, requestmessage and sync
request message. The handshake message, go away message
and notice message are used to do handshake request/
response for synchronizing the block status between
receiver and sender nodes. Time Message is used for heart-
beat detection between nodes. Request message and sync
request message are used to synchronize reversible blocks/
transactions and irreversible blocks/transactions, respec-
tively. In RDMA-enabled message handling mechanism,
to avoid the overhead of frequently registering and deregis-
tering RDMA Memory Regions (MRs), memory pool is
introduced to manage RDMA MRs. In order to improve
the efficiency of allocating fixed-size MRs for sending/
receiving control messages and corresponding remote
addresses/keys from the MR pool, multiple different types
of messages are merged into the same message definition
named as RdmaMessage. We use the field RdmaMessageType
in RdmaMssage structure to distinguish different types of

306 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 13, NO. 2, MARCH/APRIL 2020

Authorized licensed use limited to: FUDAN UNIVERSITY. Downloaded on April 10,2020 at 01:17:04 UTC from IEEE Xplore. Restrictions apply.

messages. The definition of RdmaMessageType is shown
as Table 3.

Algorithm 1. Async Messages Handling with CQ Event
Channel

Require: eventChannel, pd, wc
eventChannel: Completion event channel, to wait for work
completions.
pd: RDMA protection domain
wc: Pre-allocated work completions array used for polling

Ensure: None

1: isRun(true
2: cq(Completion queue, to poll on work completions
3: cqContext(CQ Context
4: while isRun is true do
5: ibv_get_cq_event(eventChannel, cq, cqContext)
6: ibv_ack_cq_event(eventChannel, cq, cqContext)
7: ibv_req_notify_cq(cq, 0)
8: ne(ibv_poll_cq(cq, sizeof(wc), wc)
9: for i in range(0, ne) do
10: if wc[i].opcode is IBV_WC_RECV_RDMA_WITH _IMM

then
11: rdmaChannel(wc[i].wr_id
12: rdmaChannel.Recv()
13: imm(wc[i].imm_data
14: if imm is RDMA_IMM_DATA_ACK then
15: receiveAckMsg()
16: sendNextItem()
17: continue
18: else if imm<¼RDMA_IMM_MAX_REQUEST_ID then
19: recvBlockTransactionContent()
20: continue
21: end if
22: rdmaMsg(parseMsgFromMR()
23: type(rdmaMsg.msgType
24: if type is RDMA_MSG_HANDSHAKE_REQ then
25: handleHandshakeMsg()
26: else if type is RDMA_MSG_GO_AWAY_RES then
27: handleGoAwayMsg()
28: else if type is RDMA_MSG_NOTICE_RES then
29: handleNoticeMsg()
30: else if type is RDMA_MSG_SYNC_REQ then
31: queryLocalIrreversibleBlock()
32: rdmaWriteIrreversibleBlock()
33: else if type is RDMA_MSG_VERIFY_CATCHUP then
34: queryReversibleBlockOrTxn()
35: rdmaWriteReversibleBlockOrTxn()
36: end if
37: else ifwc[i].opcode is IBV_WC_RDMA_WRITE then
38: wrId(wc[i].wr_id
39: writeType(wrId.write_type
40: if writeType is RDMA_WRITE_ID_MSG then
41: sendNextItem()
42: else if writeType is RDMA_WRITE_ID_ BLOCK_WRITE

then
43: popResponse()
44: end if
45: end if
46: end for
47: end while

4.2 RDMA-Enabled Sync Manager

RDMA-enabled sync manager is a very significant compo-
nent which is responsible for maintaining the RDMA chan-
nel list, RDMA message buffers, RDMA completion event
channel based asynchronous message handling, blocks/
transactions synchronization and so on. The blocks/trans-
actions sync processes are triggered by the handshake
negotiation among peer nodes in RDMA-based P2P net-
work. We assume that node A is the receiver and B is the
sender. Then the detail of handshake negotiation between
node A and B is shown in Fig. 5. If the received handshake
request in B is invalid, B will exploit one-sided RDMA
WRITE with immediate to send back go away message
with corresponding reason to node A. Otherwise, related
notice message will be sent back by B with the comparison
on block head id, block head number, last irreversible
block number between A and B.

Algorithm 1 demonstrates the asynchronous Completion
Queue (CQ) handling with RDMA event channel within
BoR server. Completion event channel eventChannel is
employed to deliver the notification about the upcoming
work completion in CQs, which can significantly reduce the
CPU utilization. The protection domain pd is used to guar-
antee resource isolation (like address handles and memory
regions) between different RDMA channels while the input
wc is a pre-allocated work completions array which can
cache multiple work completions in one call ibv_poll_cq().

Once the connection-oriented RDMA channel between
two peer BoR nodes is established, the BoR server in each
node will start a PollCQ thread to asynchronously listen for
event notifications attached to upcoming work requests from
completion queue. Specifically, within the loop body of the
PollCQ thread, ibv_get_cq_event() method attached to even-
tChannel is invoked and be block until the events of incoming
work completions (such as completed send and receive
requests) are trigged. Then the events are acknowledged by
invoking ibv_ack_cq_event() method while the notification for
the next completions is requested by ibv_req_notify_cq()
method. Through calling ibv_poll_cq() method, a batch of
work completions for RDMA operations have been cached
into pre-allocated wc array, which can significantly increase
the concurrency level of BoR. For each work completion wc[i]
in wc array, different operation codes opcode represent the
corresponding RDMA primitives. For instance, the opcode
IBV_WC_RECV_RDMA_WITH_IMM means the remote
RDMAWRITE operations with immediate data has been fin-
ished and the payload has been pushed into local receive
queue, while the opcode IBV_WC_RDMA_WRITE means
local RDMA WRITE operation has been finished. When wc

TABLE 3
The Definition of RdmaMessageType

Message Type Enum Value

time message RM_TIME
notice message RM_NOTICE_RESPONSE
go away message RM_GO_AWAY_RESPONSE
handshake message RM_HANDSHAKE_REQUEST
request message RM_CATCHUP_REQUEST
sync request message RM_SYNC_REQUEST

HUANG ET AL.: BOR: TOWARD HIGH-PERFORMANCE PERMISSIONED BLOCKCHAIN IN RDMA-ENABLED NETWORK 307

Authorized licensed use limited to: FUDAN UNIVERSITY. Downloaded on April 10,2020 at 01:17:04 UTC from IEEE Xplore. Restrictions apply.

[i].opcode is equal to IBV_WC_RECV_RDMA_WITH_IMM,
immediate data imm and related RDMA channel context
are extracted. If the imm is RDMA_IMM_DATA_ACK,
receive an ACK message and send the next RDMA message
from send queue. If the imm is less than or equal to
RDMA_IMM_MAX_REQUEST_ID, receive one block or
transaction data. Otherwise, we parse the control message
rdmaMsg from the specified receive MR. According to the
type field in rdmaMsg, we can identify different types of con-
trol messages like handshake and notice message and take
the corresponding message handler. When the wc[i].opcode is
equal to IBV_WC_RDMA_WRITE, the writeType flag is
extracted and used to check if the RDMA WRITE operation
on control or data message is completed.

4.3 RDMA-Enabled New Node Bootstrapping
Protocol

When referring to the blocks/transactions synchronization,
the sync state can be divided into three types: catch_up,
last_irr_catch_up and normal. For blocks, catch_up state
means sender B packages all local reversible blocks and
sends to receiver A; last_irr_catch_up state means sender B
packages all local irreversible blocks and sends to receiver
A; normal state means the irreversible block is searched in
sender B depending on the block id vector in receiver A and
the found block is sent to A. While for transactions, catch_up
state means sender B takes the reversible transaction id
required by node A as input and sends the found transac-
tions to A; normal state means sender B takes the irreversible

transaction id required by node A as input and sends the
found transactions to A.

When the new node N has just joined the blockchain net-
work, local block head number in node N is less than the
last irreversible block head number in its peer node (Node
N is in last_irr_catch_up state). This drives node N to start
synchronizing irreversible blocks from the peer node, as
shown in Fig. 7. Once local block header number in node N
is greater than the peer latest irreversible head number and
less than peer block number in the peer node (Node N is in
catch_up state), node N will start synchronizing reversible
blocks from target peer node until local head number is
greater than or equal to the head number in the peer node
(Node N is in normal state). The blocks/transactions syn-
chronization process is enabled by one-sided RDMA Write
verb with immediate data as shown in Figs. 6 and 7.

4.4 Other Optimization Considerations

This section describes additional optimization considera-
tions for BoR including the use of hybrid RDMA primitives
and efficient RDMA resources allocation.

Hybrid RDMA Primitives for BoR. As noted in prior work
[47], the use of hybrid RDMA primitives can bring better
performance gain for RDMA-based distributed transaction.
Learning from this, we leverage two-sided RDMA SEND/
RECV operations to exchange the pre-registered TX/RX
MRs between interconnected nodes, and employ one-sided
RDMA WRITE verb with immediate to boost faster trans-
port for latency-oriented control messages and bandwidth-
oriented data messages.

Fig. 5. RDMA-enabled communication protocol for BoR.

308 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 13, NO. 2, MARCH/APRIL 2020

Authorized licensed use limited to: FUDAN UNIVERSITY. Downloaded on April 10,2020 at 01:17:04 UTC from IEEE Xplore. Restrictions apply.

RDMA Resources Management. The unjustified manage-
ment of RDMA resources may result in cache misses within
RNIC HCA, which significantly affects the overall perfor-
mance of BoR. To maximize the performance benefits of
RDMA, we adopt different tuning strategies for message
buffer, send/receive queues (QP), and completion queue
(CQ). For instance, the message buffers of BoR are aligned to
cache line size to eliminate read-modify-write. In order to
minimize Translation Lookaside Buffer (TLB) misses in RNIC
and CPU, BoR employs hugepages with 2 MB page size to
allocate message buffers on close NUMA node. Shared
receive queue (SRQ) is leveraged to improve the scalability of

BoR while single completion queue per thread/core is
exploited to avoid polling on several memory segments. In
order to achieve lower CPU consumption, BoR uses comple-
tion event channel and caches multiple work completions in
one call. In addition, pre-registered MR pool is leveraged for
the one-sided transfer of BoR to mitigate the delay overhead
introduced by registering or deregisteringMRs at runtime.

5 EVALUATION

5.1 Experiment Setup

Hardware Configuration. We conducted the performance
experiment between BoR and plain EoS on a RoCEv2-based

Fig. 6. Rdma-enabled verify_catchup() process for BoR.

Fig. 7. Rdma-enabled start_sync() process for BoR.

HUANG ET AL.: BOR: TOWARD HIGH-PERFORMANCE PERMISSIONED BLOCKCHAIN IN RDMA-ENABLED NETWORK 309

Authorized licensed use limited to: FUDAN UNIVERSITY. Downloaded on April 10,2020 at 01:17:04 UTC from IEEE Xplore. Restrictions apply.

testbed with 4 servers which inter-connected by a Mellanox
SN2100 switch, as shown in Table 4. The DRAM size in each
server is 128 GB with the type of DDR4, whose speed is
2,400 MHz. Each server is equipped with two E5-2687Wv4
CPU processors with 12 CPU cores and 3.00 GHz frequency.
The L1 cache of each CPU core is 768 KB while the L2 cache
is 3,072 KB. 12 cores on one CPU processor share the same
30 MB L3 cache. The RNIC in our servers is a ConnectX-5
MCX516A-CDAT 100 Gbps RoCE NIC and is connected to
the SN2100 switch through PCIe 3.0x16. Nodeos and keos-
dare deployed in server 192.168.2.1 while three produ-
cers are deployed in server 192.168.2.2, 192.168.2.3 and
192.168.2.4. The OS release of all nodes is CentOS 7.4.1708
with OFED v4.5-1.0.1.

Experiment Design for Initial Block Synchronization. We
respectively deploy BoR and original EoS blockchain net-
work testbeds with three hosts named A, B, C. Then, 5
pieces of historical block datasets with different scales (10,
20, 30, 40, and 50 GB) are obtained from the EosNode test
network [48]. We setup 5 cases based on 5 block files. In
each case, the corresponding historical block files are
replayed on BoR and plain EoS testbeds. We assume server
D as a new node for the blockchain network.

5.2 Performance Analysis on Initial Block Sync

For the performance comparison between BoR and plain
EoS, we center on two performance metrics including con-
suming time and CPU usage. Consuming time is defined as
how long it takes to complete the initial block sync of a new
node in blockchain network. The scale of target historical
block datasets is regarded as an independent variable. CPU
usage indicates how much CPU resources are used during
the initial block sync. It contains three dimensions: the time-
series distribution of CPU utilization, the average CPU
usage with different scales of block datasets, and the peak
of CPU usage differences between BoR and plain EoS. Linux
performance monitoring tool sar is leveraged to collect the
CPU utilization once per second in time-series manner.

Average CPU utilization (referred to as AVG CPU Usage) is
calculated by dividing the accumulated CPU usage value
by the overall consuming time. The differences called CPU
D-value refers to the gap of CPU usage at the relatively same
time between BoR and plain EoS. The peak represents the
maximum value of the CPU D-value. Each result in the
experiment is the average of 12 runs.

Based on performance results, we observed that RDMA-
enhanced paradigm can reduce the latency of initial block
sync by up to 20.2 percent and decrease the average CPU
overhead by 26.4~33.9 percent, which can boost the high-per-
formance DPoS-based blockchain in BaaS cloud data
centers.

5.2.1 Consuming Time for Initial Block Synchronization

Fig. 9 shows the distribution of consuming time under differ-
ent-scale historical block datasets during the initial sync of
new nodes in BoR and traditional EoS network. We can find
that BoR with one-sided RDMA WRITE achieves much
lower overall consuming time (up to 20.2 percent) than tradi-
tional TCP-based EoS with max latency gap of 36 s and min
latency gap of 5 s. In the best case, the initialization block of
BoR is synchronized. The overall time consumption is nearly
20.2 percent better than native EoS (as shown in Fig. 9a).
Where the consuming time of 50 GB-scale block records of
BoR is 114 s while that of native EoS is 91 s. We can see that
the gap of consuming time is significantly increased once the
scale of block records is greater than 40 GB in Fig. 9b. This
advantage benefits from less memory copies, higher message
rate and significantly reduced CPU context switching in BoR
with the use of hybrid RDMA primitives.

5.2.2 CPU Usage for Initial Block Synchronization

The time-series distribution of CPU utilization and average
cpu usage are demonstrated in Figs. 8 and 10. Compared to
plain EoS, BoR significantly reduces the CPU overhead. In
terms of the distribution of CPU usage, Fig. 8 shows that the
trend line of CPU usage occupied by BoR is generally below

TABLE 4
Configuration of Experiment

Number of Servers 4

Model Name PowerEdge R730
Vendor Dell
CPUs 10
CPU cores 48
RAM 128 GB DDR4
OS CentOS 7.4.1708
RDMA Switch Mellanox SN2100 (100 Gbps)
RDMA NIC MCX516A-CDAT ConnectX-5 (100 Gbps)

Fig. 8. The CPU utilization of initial blocks synchronization with different historical blocks datasets.

Fig. 9. The consuming time of initial blocks synchronization with different
historical blocks datasets.

310 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 13, NO. 2, MARCH/APRIL 2020

Authorized licensed use limited to: FUDAN UNIVERSITY. Downloaded on April 10,2020 at 01:17:04 UTC from IEEE Xplore. Restrictions apply.

bobhuang
高亮

that of plain EoS under different block volumes. From Fig. 10a
we can see that BoR achieves 26.4~33.9 percent lower CPU utili-
zation than plain EoS. In the best case, the average CPU usage
of BoR is 0.49 percentwhile that of EoS is 0.75 percent.Moreover,
with increasing scale of block records, the averageCPUutiliza-
tion of RDMA-driven BoR is more stable than TCP-based EoS
(as shown in Fig. 10b, this can bring stable BaaS quality. The
performance improvement achieved by BoR is due to the
unique features of kernel bypassing and network protocol
stack offloading in RDMA-capable network. The pre-allocated
MRpool and asynchronous RDMAevent channel also contrib-
ute to the lower CPU overhead of BoR.

6 RELATED WORK

Blockchain Performance Analysis and Optimization. In recent
years, many research works focus on how to optimize the
performance of blockchain. In [49], the author first recon-
structs the architecture of Hyperledger and Ethereum and
then evaluates the modifiability, security and performance
of these architectures. The author announces that these three
metrics are the most important in blockchain evaluation. In
[8], the authors first prove that the blockchain consensus
mechanism satisfies a strong form of consistency and activ-
ity in asynchronous networks, with a priority-limited defen-
sive delay, allowing adaptive damage and new player
generation in formal models. In addition, the authors make
a contribution that an abstract blockchain protocol has been
proposed to identify the security. In [8], [9], [10], many other
researches pay attention to performance analysis and gain
great achievements. However, none of these realizes that
the network performance is becoming more significant with
the fast development of blockchain technology. Therefore,
we propose BoR which focuses on the network layer optimi-
zation of blockchain systems with RDMA-driven paradigm.

Consensus Protocol. Since the consensus is one of the most
important part of blockchain technology, many researches are
interested in consensus protocol. Bitcoin-NG [14] proposes a
new blockchain protocol as a next generation protocol on Bit-
coin. In [15], the author proposes a new framework to monitor
the PoW-based blockchain, as well as introduces various
parameters of consensus and network. Real-world constraints
(such as network propagation, different block sizes, block gen-
eration intervals, and information disseminationmechanisms)
are taken into account when designing the blockchain frame-
work. In [16], the author proposes a Proof-of-Trust blockchain
named PoT to reduce the energy expenditure of PoW. With
PoT, a peer node can do less work as long as it is proved to be
more creditable. PoT is a typical solution for consensus

protocol optimization based on a trust graph. With all above
works, the previous inefficient consensusmechanism has been
greatly improved. However, few research commits to improv-
ing the network performance in blockchain system. That’s
mainly because thatwith the underlying network an inefficient
consensus protocol is not a bottleneckwhile the network trans-
mission with an efficient consensus protocol becomes a poten-
tial performance bottleneck. Hence, kernel-bypassing RDMA
network is employed in BoR to bridge the performance gap for
a faster andmore efficient blockchain.

RDMA-Driven Applications. RDMA-enabled network is
widely deployed in data centers recently due to its high
throughput, low latency and low CPU overhead. In [28], [50],
an RDMA-driven B-tree store architecture is proposed to
reduce the network overhead and improve the performance.
In [20], Wukong provides a fast and concurrent solution on
graph exploration using RDMA communication. It uses dif-
ferent RDMA primitives (i.e., RDMA READ/WRITE) based
on different-scale RDF query. In [31], [51], [52], HydraDB,
Nessie and InnerCache all propose an efficient key-value sys-
tem based on RDMA. HydraDB provides an access service in
a reliable way for distributed applications under high
throughput and low latency. Nessie is an RDMA-enabled
key-value system that provides a none-server solution in ser-
vicing requests and decouples the index and the data. InnerC-
ache is another RDMA-based in-memory key-value store that
provides a tactful cache mechanism. It leverages two-sided
communication to improve the system performance. Other
key-value researches [27], [32], [33] also achieve good results.
In addition, RDMA-driven system optimization is also a
research hotspot [30], [53], [54]. However, no research com-
mits to designing an RDMA-enabled blockchain application
so far. Therefore, BoR is the first attempt to accelerate the dis-
tributed blockchain using kernel-bypassing RDMAnetwork.

7 CONCLUSION & FUTURE WORK

In this paper, we first analyze the bottleneck of the existing
blockchain systems for emerging BaaS cloud. According to
our investigation, consensus is the bottleneck of previous
blockchain, such as Bitcoin and Ethereum. Fortunately, the
consensus protocol has been improved significantly in recent
years (i.e., EoS and its DPoS). However, with the faster consen-
sus protocols, the bottleneck in blocks/transactions transmis-
sion over traditional TCP/IP network is gradually revealed.
Therefore, we propose the design and implementation of BoR,
a first RDMA-driven blockchain platform that leverages
RDMA communication primitives to achieve high throughput
and low latencywithout CPU intervention for the initial blocks
synchronization and blocks/transactions propagation under
high concurrency in BaaS cloud. Kernel-bypass and zero-copy
technology in RDMA-enabled network are exploited by BoR
to efficiently achieve higher performance. RDMA completion
event channel is also leveraged to receive control message or
blocks/transactions asynchronously while one-sided RDMA
write with immediate data is employed to send control and
data messages. To mitigate the high CPU overhead and long
consuming time, BoR leverages RDMA in two paradigms: one
is the initial synchronization when a new node joins the P2P
network, and the other is the block broadcast when a producer
generates a new block. Our evaluation shows that BoR

Fig. 10. The distribution of average CPU usage between BoR and plain
EoS with the increasing scale of block datasets.

HUANG ET AL.: BOR: TOWARD HIGH-PERFORMANCE PERMISSIONED BLOCKCHAIN IN RDMA-ENABLED NETWORK 311

Authorized licensed use limited to: FUDAN UNIVERSITY. Downloaded on April 10,2020 at 01:17:04 UTC from IEEE Xplore. Restrictions apply.

bobhuang
高亮

significantly outperforms the original EoS blockchain system
by a wide margin. Compared with the state-of-the-art EoS
blockchain, BoR obviously reduces the latency by up to 20.2
percent, and decreases the CPU utilization by 26.4~33.9 percent
when a newnode joins the blockchain network.

Our future work may extend BoR to support multi-path
RDMA transport for initial blocks synchronization in BaaS
cloud data center. We also plan to leverage the Reliable
Datagram transport for RDMA communication to increase
the scalability of BoR-based BaaS cloud. Apart from this, we
aim to combine the emerging high-speed Non-Volatile
Memory (NVM) with modern RDMA hardware to acceler-
ate the persistence of metadata and blocks in BoR.

ACKNOWLEDGMENTS

We would like to thank anonymous reviewers for their
insightful feedback. We sincerely thank Qingchun Song, Gil
Blooh and Pengzhi Zhu, researchers in Mellanox, for their
helpful discussions and technology support. The work of this
paper is supported by National Natural Science Foundation
of China under Grant (No. 61873309, No. 61572137, and
No.61728202), and Shanghai Innovation Action Plan Project
under Grant (No. 19510710500, No. 18510760200, and No.
18510732000), and 2017 Research Projects of Shanghai Science
and Technology Commission under GrantNo. 17DZ1101000.

REFERENCES

[1] Blockchain on aws, 2018. [Online]. Available: https://aws.
amazon.com/blockchain/, AmazonWeb Services, Inc

[2] Azure blockchain service, 2018. [Online]. Available: https://azure.
microsoft.com/en-us/services/blockchain-service/,Microsoft Azure

[3] IBM blockchain platform, 2018. [Online]. Available: https://www.
ibm.com/cloud/blockchain-platform, IBMCloud Technologies

[4] Bitcoin-wikipedia, 2017. [Online]. Available: https://en.wikipedia.
org/wiki/Bitcoin

[5] Ethereum, 2015. [Online]. Available: https://www.ethereum.
org/, Ethereum, Inc

[6] E. Androulaki et al., “Hyperledger fabric: A distributed operating
system for permissioned blockchains,” in Proc. 13th EuroSys Conf.,
2018, Art. no. 30.

[7] DanielLarimer, “EOSIO | Blockchain software architecture.” 2018.
[Online]. Available: https://eos.io/

[8] R. Pass, L. Seeman, and A. Shelat, “Analysis of the blockchain pro-
tocol in asynchronous networks,” in Proc. Annu. Int. Conf. Theory
Appl. Cryptographic Techn., 2017, pp. 643–673.

[9] P. Zheng, Z. Zheng, X. Luo, X. Chen, andX. Liu, “A detailed and real-
time performancemonitoring framework for blockchain systems,” in
Proc. 40th Int. Conf. Softw. Eng.: Softw. Eng. Pract., 2018, pp. 134–143.

[10] N. Papadis, S. Borst, A. Walid, M. Grissa, and L. Tassiulas,
“Stochastic models and wide-area network measurements for
blockchain design and analysis,” in Proc. IEEE Conf. Comput. Com-
mun., 2018, pp. 2546–2554.

[11] Z. Xu, S. Han, and L. Chen, “CUB, a consensus unit-based storage
scheme for blockchain system,” in Proc. IEEE 34th Int. Conf. Data
Eng., 2018, pp. 173–184.

[12] H. Sukhwani, J. M. Mart�ınez, X. Chang, K. S. Trivedi, and
A. Rindos, “Performance modeling of PBFT consensus process for
permissioned blockchain network (hyperledger fabric),” in Proc.
IEEE 36th Symp. Reliable Distrib. Syst., 2017, pp. 253–255.

[13] D. Larimer, “Delegated proof-of-stake (DPoS),” Bitshare whitepa-
per, 2014.

[14] I. Eyal, A. E. Gencer, E. G. Sirer, and R. Van Renesse, “Bitcoin-NG:
A scalable blockchain protocol,” in Proc. USENIX Conf. Netw. Syst.
Des. Implementation, 2016, pp. 45–59.

[15] A. Gervais, G. O. Karame, K. W€ust, V. Glykantzis, H. Ritzdorf,
and S. Capkun, “On the security and performance of proof of
work blockchains,” in Proc. ACM SIGSAC Conf. Comput. Commun.
Security, 2016, pp. 3–16.

[16] L. Bahri and S. Girdzijauskas, “When trust saves enegry: A refer-
ence framework for proof-of-trust (PoT) blockchains,” in Proc.
Web Conf., 2018, pp. 1165–1169.

[17] Bitcoin.com | bitcoin news and technology source, 2019. [Online].
Available: https://www.bitcoin.com/

[18] Z. Zheng, S. Xie, H. Dai, X. Chen, and H. Wang, “An overview of
blockchain technology: Architecture, consensus, and future trends,”
in Proc. IEEE Int. Congr. Big Data, 2017, pp. 557–564.

[19] M. Beck and M. Kagan, “Performance evaluation of the RDMA
over ethernet (RoCE) standard in enterprise data centers infra-
structure,” in Proc. 3rd Workshop Data Center-Converged Virtual
Ethernet Switching, 2011, pp. 9–15.

[20] J. Shi, Y. Yao, R. Chen, H. Chen, and F. Li, “Fast and concurrent RDF
queries with RDMA-based distributed graph exploration,” in Proc.
USENIXConf. Operating Syst. Design Implementation, 2016, pp. 317–332.

[21] Z. Wu, Z. Lu, P. C. Hung, S.-C. Huang, Y. Tong, and Z. Wang,
“QaMeC: A QoS-driven IoVs application optimizing deployment
scheme in multimedia edge clouds,” Future Gener. Comput. Syst.,
vol. 92, pp. 17–28, 2019.

[22] N. S. Islam, M. Wasi-ur Rahman, X. Lu, and D. K. Panda, “High
performance design for HDFS with byte-addressability of NVM
and RDMA,” in Proc. Int. Conf. Supercomput., 2016, Art. no. 8.

[23] X. Chen et al., “iDiSC: A new approach to IoT-data-intensive service
components deployment in edge-cloud-hybrid system,” IEEE Access,
vol. 7, pp. 59 172–59 184, 2019.

[24] B. K. C. Zhang et al., “A deep reinforcement learning based approach
for cost- and energy-aware multi-flow mobile data offloading,” in
IEICE Trans. Commun., vol. E101.B(7), pp. 1625–1634, 2019.

[25] P. Wu, Z. Lu, Q. Zhou, Z. Lei, X. Li, M. Qiu, and P. C. Hung,
“Bigdata logs analysis based on seq2seq networks for cognitive
Internet of Things,” Future Gener. Comput. Syst., vol. 90,
pp. 477–488, 2019.

[26] C. Guo,H.Wu, Z. Deng, G. Soni, J. Ye, J. Padhye, andM. Lipshteyn,
“RDMA over commodity ethernet at scale,” in Proc. ACM SIG-
COMM, 2016, pp. 202–215.

[27] N. S. Islam, D. Shankar, X. Lu, M. Wasi-Ur-Rahman, and
D. K. Panda, “Accelerating I/O performance of big data analytics
on HPC clusters through RDMA-based key-value store,” in Proc.
44th Int. Conf. Parallel Process., 2015, pp. 280–289.

[28] F. Li, S. Das, M. Syamala, and V. R. Narasayya, “Accelerating
relational databases by leveraging remote memory and RDMA,”
in Proc. Int. Conf. Manage. Data, 2016, pp. 355–370.

[29] B. Huang, L. Jin, Z. Lu, M. Yan, J. Wu, P. C. Hung, and Q. Tang,
“RDMA-driven MongoDB: An approach of RDMA enhanced
NoSQL paradigm for large-scale data processing,” Inf. Sci.,
vol. 502, pp. 376–393, 2019.

[30] Y. Lu, J. Shu, Y. Chen, and T. Li, “Octopus: An RDMA-enabled
distributed persistent memory file system,” in Proc. USENIX
Annu. Tech. Conf., 2017, pp. 773–785.

[31] B. Cassell, T. Szepesi, B.Wong, T. Brecht, J.Ma, and X. Liu, “Nessie:
A decoupled, client-driven key-value store using RDMA,” IEEE
Trans. Parallel Distrib. Syst., vol. 28, no. 12, pp. 3537–3552, Dec. 2017.

[32] A. K. M. Kaminsky and D. G. Andersen, “Using RDMA efficiently
for key-value services,” in Proc. ACM SIGCOMM, 2014,
pp. 295–306.

[33] D. Shankar, X. Lu, N. Islam, M. Wasi-Ur-Rahman, and D. K. Panda,
“High-performance hybrid key-value store on modern clusters with
RDMA interconnects and SSDs: Non-blocking extensions, designs,
and benefits,” in Proc. IEEE Int. Parallel Distrib. Process. Symp., 2016,
pp. 393–402.

[34] M. Wasi-ur Rahman, X. Lu, N. S. Islam, R. Rajachandrasekar, and
D. K. Panda, “High-performance design of YARN MapReduce on
modern HPC clusters with lustre and RDMA,” in Proc. IEEE Int.
Parallel Distrib. Process. Symp., 2015, pp. 291–300.

[35] M. Ali, J. C. Nelson, R. Shea, and M. J. Freedman, “Blockstack:
A global naming and storage system secured by blockchains,” in
Proc. USENIX Annu. Tech. Conf., 2016, pp. 181–194.

[36] M. Barborak, A. Dahbura, and M. Malek, “The consensus problem
in fault-tolerant computing,” ACM Comput. Surv., vol. 25, no. 2,
pp. 171–220, 1993.

[37] L. O. Taylor, M. McKee, S. K. Laury, and R. G. Cummings,
“Induced-value tests of the referendum voting mechanism,” Econ.
Lett., vol. 71, no. 1, pp. 61–65, 2001.

[38] J. Gattermayer and P. Tvrdik, “Blockchain-based multi-level scor-
ing system for P2P clusters,” in Proc. 46th Int. Conf. Parallel Process.
Workshops, 2017, pp. 301–308.

312 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 13, NO. 2, MARCH/APRIL 2020

Authorized licensed use limited to: FUDAN UNIVERSITY. Downloaded on April 10,2020 at 01:17:04 UTC from IEEE Xplore. Restrictions apply.

https://aws.amazon.com/blockchain/, Amazon Web Services, Inc
https://aws.amazon.com/blockchain/, Amazon Web Services, Inc
https://aws.amazon.com/blockchain/, Amazon Web Services, Inc
https://aws.amazon.com/blockchain/, Amazon Web Services, Inc
https://www.ibm.com/cloud/blockchain-platform
https://www.ibm.com/cloud/blockchain-platform
https://en.wikipedia.org/wiki/Bitcoin
https://en.wikipedia.org/wiki/Bitcoin
https://www.ethereum.org/, Ethereum, Inc
https://www.ethereum.org/, Ethereum, Inc
https://eos.io/
https://www.bitcoin.com/

[39] N. Z. Aitzhan and D. Svetinovic, “Security and privacy in decen-
tralized energy trading through multi-signatures, blockchain and
anonymous messaging streams,” IEEE Trans. Dependable Secure
Comput., vol. 15, no. 5, pp. 840–852, Sep./Oct. 2018.

[40] I.-C. Lin and T.-C. Liao, “A survey of blockchain security issues
and challenges,” IJ Netw. Security, vol. 19, no. 5, pp. 653–659, 2017.

[41] K. Christidis and M. Devetsikiotis, “Blockchains and smart contracts
for the Internet of Things,” IEEEAccess, vol. 4, pp. 2292–2303, 2016.

[42] Hyperledger— Open source blockchain technologies, 2018.
[Online]. Available: https://www.hyperledger.org/, The Linux
Foundation

[43] A. Dua, N. Bulusu, W.-C. Feng, and W. Hu, “Towards trustwor-
thy participatory sensing,” in Proc. 4th USENIX Conf. Hot Topics
Security, 2009, pp. 8–8.

[44] S. Hu, C. Cai, Q. Wang, C. Wang, X. Luo, and K. Ren, “Searching an
encrypted cloud meets blockchain: A decentralized, reliable and fair
realization,” inProc. IEEEConf. Comput. Commun., 2018, pp. 792–800.

[45] A. Dragojevi�c, D. Narayanan, M. Castro, and O. Hodson, “FaRM:
Fast remote memory,” in Proc. 11th USENIX Symp. Netw. Syst.
Design Implementation, 2014, pp. 401–414.

[46] H. Chen et al., “Fast in-memory transaction processing using RDMA
andHTM,”ACMTrans. Comput. Syst., vol. 35, no. 1, 2017, Art. no. 3.

[47] X. Wei, Z. Dong, R. Chen, and H. Chen, “Deconstructing RDMA-
enabled distributed transactions: Hybrid is better!” in Proc. 13th USE-
NIX Symp. Operating Syst. Design Implementation, 2018, pp. 233–251.

[48] B. Matrix, “EOS node tool.” 2018. [Online]. Available: https://
eosnode.tools/blocks

[49] J. Kim, S. Kang, H. Ahn, C. Keum, and C.-G. Lee, “Architecture
reconstruction and evaluation of blockchain open source platform,”
inProc. 40th Int. Conf. Softw. Eng.: Companion Proc., 2018, pp. 185–186.

[50] C. M. K. Montgomery, L. Nelson, S. Sen, and J. Li, “Balancing CPU
and network in the cell distributed B-Tree store,” in Proc. USENIX
Annu. Tech. Conf., 2016, Art. no. 451.

[51] Y. Wang et al., “HydraDB: A resilient RDMA-driven key-value
middleware for in-memory cluster computing,” in Proc. SC-Int.
Conf. High Perform. Comput. Netw. Storage Anal., 2015, pp. 1–11.

[52] M. Yang, S. Yu, R. Yu, N. Xiao, F. Liu, and W. Chen, “InnerCache:
A tactful cache mechanism for RDMA-based key-value store,” in
Proc. IEEE Int. Conf. Web Services, 2016, pp. 646–649.

[53] A. K. M. Kaminsky and D. G. Andersen, “Design guidelines for
high performance RDMA systems,” in Proc. USENIX Annu. Tech.
Conf., 2016, Art. no. 437.

[54] F. Liu, L. Yin, and S. Blanas, “Design and evaluation of an RDMA-
aware data shuffling operator for parallel database systems,” in
Proc. 12th Eur. Conf. Comput. Syst., 2017, pp. 48–63.

Bobo Huang is working toward the PhD degree
in the School of Computer Science, Fudan Uni-
versity, Shanghai, China. His research interests
include cloud computing, distributed system, data
center networks, big data system, network func-
tions virtualization, and network management
driven by big data. He is a student member of the
IEEE.

Li Jin is working toward the master’s degree in
the School of Computer Science, Fudan Univer-
sity, Shanghai, China. His research interests
include networking, data center networks, cloud
computing, big data distributed system, and net-
work architecture.

Zhihui Lu received the PhD degree in computer
science from Fudan University, Shanghai, China
in 2004. He is an associate professor with the
School of Computer Science, Fudan University.
His research interests include big data architec-
ture, cloud computing and service computing
technology, edge computing, and blockchain dis-
tributed system. He is a member of the IEEE.

Xin Zhou is working toward the master’s degree
in the School of Computer Science, Fudan Uni-
versity, Shanghai, China. His research interests
include data center network, operating systems,
cloud computing, and big data distributed system.

Jie Wu received the PhD degree in computer sci-
ence from Fudan University, Shanghai, China in
2008. He is a professor with the School of Com-
puter Science, Fudan University. His research
interests include internet technology, big data
architecture, service computing, cloud comput-
ing, software defined network, and blockchain
technology. He is a member of the IEEE.

Qifeng Tang received the graduate degree from
EMBA, Beijing University of Aeronautics and
Astronautics, Beijing, China. He is currently a
CEO of Shanghai Data Exchange Corporation,
chairman of the Board of Directors of National
Engineering Laboratory, China Big Data Circula-
tion and Transaction Technology, and chairman
of BDU of China Enterprise Big Data Alliance. He
has been engaged in the research of the big data
application for a long time. He is a representative
figure in the field of big data application in China

and has many invention patents. He led the Shanghai Data Exchange
Center to develop a data trading platform, to promote the interconnec-
tion and cooperation of Data Trading Institutions in the Pan-Yangtze
River Delta region and even in the whole country, and to promote the cir-
culation of commercial data assets.

Patrick C. K. Hung is a professor with the Faculty
of Business and Information Technology, University
of Ontario Institute of Technology, Canada. He has
been working with Boeing Research and Technol-
ogy in Seattle, Washington on aviation services-
related research projects. He owns a U.S. patent on
Mobile Network Dynamic Workflow Exception Han-
dling System with Boeing. His research interests
include services computing, big data architecture,
business process, and security. He is a member of
the IEEE.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

HUANG ET AL.: BOR: TOWARD HIGH-PERFORMANCE PERMISSIONED BLOCKCHAIN IN RDMA-ENABLED NETWORK 313

Authorized licensed use limited to: FUDAN UNIVERSITY. Downloaded on April 10,2020 at 01:17:04 UTC from IEEE Xplore. Restrictions apply.

https://www.hyperledger.org/, The Linux Foundation
https://www.hyperledger.org/, The Linux Foundation
https://eosnode.tools/blocks
https://eosnode.tools/blocks

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

